Title A 28 nm 16 Kb Bit-Scalable Charge-Domain Transpose 6T SRAM In-Memory Computing Macro
Authors Song, Jiahao
Tang, Xiyuan
Qiao, Xin
Wang, Yuan
Wang, Runsheng
Huang, Ru
Affiliation Peking Univ, Sch Integrated Circuits, Key Lab Microelect Devices & Circuits MOE, Beijing 100871, Peoples R China
Inst Artificial Intelligence, Ctr Brain Inspired Chips, Beijing 100871, Peoples R China
Peking Univ, Sch Integrated Circuits, MOE, Beijing 100871, Peoples R China
Keywords CNN ACCELERATOR
Issue Date Feb-2023
Publisher IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS
Abstract This article presents a compact, robust, and transposable SRAM in-memory computing (IMC) macro to support feed forward (FF) and back propagation (BP) computation within a single macro. The transpose macro is created with a clustering structure, and eight 6T bitcells are shared with one charge-domain computing unit (CCU) to efficiently deploy the DNNs weights. The normalized area overhead of clustering structure compared to 6T SRAM cell is only 0.37. During computation, the CCU performs robust charge-domain operations on the parasitic capacitances of the local bitlines in the IMC cluster. In the FF mode, the proposed design supports 128-input 1b XNOR and 1b AND multiplications and accumulations (MACs). The 1b AND can be extended to multi-bit MAC via bit-serial (BS) mapping, which can support DNNs with various precision. A power-gated auto-zero Flash analog-to-digital converter (ADC) reducing the input offset voltage maintains the overall energy efficiency and throughput. The proposed macro is prototyped in a 28-nm CMOS process. It demonstrates a 1b energy efficiency of 166|257 TOPS/W in FF-XNOR|AND mode, and 31.8 TOPS/W in BP mode, respectively. The macro achieves 80.26%|85.07% classification accuracy for the CIFAR-10 dataset with 1b|4b CNN models. Besides, 95.50% MNIST dataset classification accuracy (95.66% software accuracy) is achieved by the BP mode of the proposed transpose IMC macro.
URI http://hdl.handle.net/20.500.11897/672081
ISSN 1549-8328
DOI 10.1109/TCSI.2023.3244338
Indexed SCI(E)
Appears in Collections: 待认领

Files in This Work
There are no files associated with this item.

Web of Science®


0

Checked on Last Week

Scopus®



Checked on Current Time

百度学术™


0

Checked on Current Time

Google Scholar™





License: See PKU IR operational policies.