Title Fluid-Structure Interaction Simulation and Accurate Dynamic Modeling of Parachute Warhead System Based on Impact Point Prediction
Authors Zhu, Hong
Sun, Qinglin
Tao, Jin
Tan, Panlong
Chen, Zengqiang
Dehmer, Matthias
Xie, Guangming
Affiliation Nankai Univ, Coll Artificial Intelligence, Tianjin, Peoples R China
Aalto Univ, Dept Elect Engn & Automat, Espoo 02150, Finland
Swiss Distance Univ Appl Sci, Dept Comp Sci, CH-3900 Brig, Switzerland
Peking Univ, Coll Engn, Beijing 100871, Peoples R China
Keywords GUIDANCE
Issue Date 2021
Publisher IEEE ACCESS
Abstract To predict a parachute-warhead system's dynamic characteristics and impact point, numerical methods are used to comprehensively predict the large deformations of the parachute during the opening process and the impact point of the system in the terminal landing phase. Fluid-structure interaction simulations based on the arbitrary Lagrangian-Eulerian method are used to study the Disk-Gap-Band parachute's inflation behavior and provide the parachute's aerodynamic parameters at steady state. Based on the obtained aerodynamic data, a nine-degree-of-freedom dynamic model of the parachute-warhead system was established, which was used to predict the landing area of the system by calculating the falling trajectory. Based on the established model, an online impact point prediction program was developed. Finally, the effectiveness and accuracy of the methods were verified by airdrop experiments. The results showed that the methods for the parachute-warhead system modeling during the inflation and terminal descent phases could effectively predict its dynamic characteristics, which could be further applied for precision airdrop missions.
URI http://hdl.handle.net/20.500.11897/623073
ISSN 2169-3536
DOI 10.1109/ACCESS.2021.3099248
Indexed SCI(E)
Appears in Collections: 工学院

Files in This Work
There are no files associated with this item.

Web of Science®


0

Checked on Last Week

Scopus®



Checked on Current Time

百度学术™


0

Checked on Current Time

Google Scholar™





License: See PKU IR operational policies.