TitleIntelligent Omni-Surfaces: Reflection-Refraction Circuit Model, Full-Dimensional Beamforming, and System Implementation
AuthorsZeng, Shuhao
Zhang, Hongliang
Di, Boya
Liu, Yuanwei
Di Renzo, Marco
Han, Zhu
Poor, H. Vincent
Song, Lingyang
AffiliationPeking Univ, Sch Elect, Beijing 100871, Peoples R China
Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
Univ Paris Saclay, CNRS, Cent Supelec, Lab Signaux & Syst, F-91192 Gif sur Yvette, France
Univ Houston, Dept Elect & Comp Engn, Houston, TX 77004 USA
Kyung Hee Univ, Dept Comp Sci & Engn, Seoul 446701, South Korea
KeywordsWIRELESS COMMUNICATIONS
SPATIAL MODULATION
MIMO
DESIGN
Issue DateNov-2022
PublisherIEEE TRANSACTIONS ON COMMUNICATIONS
AbstractThe intelligent omni-surface (IOS) is a dynamic metasurface that has recently been proposed to achieve full-dimensional communications by realizing the dual function of anomalous reflection and anomalous refraction. Existing research works provide only simplified models for the reflection and refraction responses of the IOS, which do not explicitly depend on the physical structure of the IOS and the angle of incidence of the electromagnetic (EM) waves. Therefore, the available reflection-refraction models are insufficient to characterize the performance of full-dimensional communications. In this paper, we propose a complete and detailed circuit-based reflection-refraction model for the IOS, which is formulated in terms of the physical structure and equivalent circuits of the IOS elements, as well as we validate it with the aid of full-wave EM simulations. Based on the proposed circuit-based model for the IOS, we analyze the asymmetry between the reflection and transmission coefficients. Moreover, the proposed circuit-based model is utilized for optimizing the hybrid beamforming of IOS-assisted networks and hence improving the system performance. To verify the circuit-based model, the theoretical findings, and to evaluate the performance of full-dimensional beamforming, we implement a prototype of IOS and deploy an IOS-assisted wireless communication testbed to experimentally measure the beam patterns and to quantify the achievable rate. The obtained experimental results validate the theoretical findings and the accuracy of the proposed circuit-based reflection-refraction model for IOSs.
URIhttp://hdl.handle.net/20.500.11897/672112
ISSN0090-6778
DOI10.1109/TCOMM.2022.3207804
IndexedSCI(E)
Appears in Collections:待认领

Files in This Work
There are no files associated with this item.

Web of Science®



Checked on Last Week

Scopus®



Checked on Current Time

百度学术™



Checked on Current Time

Google Scholar™





License: See PKU IR operational policies.