Title Development of a compliant dashpot model with nonlinear and linear behaviors for the contact of multibody systems
Authors Wang, Gengxiang
Ma, Daolin
Liu, Caishan
Liu, Yang
Affiliation Xian Univ Architecture & Technol, Sch Mech & Elect Engn, Xian 710055, Shaanxi, Peoples R China
Peking Univ, Coll Engn, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China
Univ Exeter, Engn Dept, North Pk Rd, Exeter EX4 4QF, England
Keywords FORCE-DISPLACEMENT MODEL
IMPACT ANALYSIS
FINITE-ELEMENT
RESTITUTION COEFFICIENT
DYNAMICS
INDENTATION
SIMULATION
JOINT
DEFORMATION
DISSIPATION
Issue Date 15-Feb-2023
Publisher MECHANICAL SYSTEMS AND SIGNAL PROCESSING
Abstract A comprehensive dashpot model with hysteresis damping factors that can provide a convenient calculation approach for the elastoplastic impact behavior in multibody systems is studied in this paper. At the beginning of contact, the nonlinear hysteresis damping factor in the elastic phase is derived by approximately solving a nonlinear vibration system. When impact happens at a relatively high speed with a large load, elastoplastic deformation is inevitable, and Hertz contact stiffness cannot represent the actual contact stiffness. In order to describe the contact stiffness in the elastoplastic or plastic phase correctly, a static elastoplastic contact model is adopted to calculate the contact stiffness by approximately linearizing the relationship between load and deformation. When the contact comes into the elastoplastic phase, the impact behavior can be treated as a linear vibration system, and the linear hysteresis damping factor can be obtained from this linear system. The energy dissipation in different contact phases can be described by a nonlinear and a linear hysteresis damping factors. Such a nonlinear hysteresis damping factor can make up for the deficiency of the static elastoplastic contact model when describing the energy dissipation in the elastic contact phase. Simulation results show that the proposed dashpot model is more harmonious with the static elastoplastic contact model compared to the existing dashpot models. A slider-crank mechanism with a clearance joint and a Hopkinson incident bar are exemplified in the present work by using experimental data to validate the effectiveness of the proposed dashpot model.
URI http://hdl.handle.net/20.500.11897/657711
ISSN 0888-3270
DOI 10.1016/j.ymssp.2022.109785
Indexed EI
SCI(E)
Appears in Collections: 工学院
湍流与复杂系统国家重点实验室

Files in This Work
There are no files associated with this item.

Web of Science®


0

Checked on Last Week

Scopus®



Checked on Current Time

百度学术™


0

Checked on Current Time

Google Scholar™





License: See PKU IR operational policies.