Title Regional PM2.5 pollution confined by atmospheric internal boundaries in the North China Plain: boundary layer structures and numerical simulation
Authors Jin, Xipeng
Cai, Xuhui
Yu, Mingyuan
Song, Yu
Wang, Xuesong
Zhang, Hongsheng
Zhu, Tong
Affiliation Peking Univ, Coll Environm Sci & Engn, State Key Lab Environm Simulat & Pollut Control, Beijing 100871, Peoples R China
Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Nanjing 210044, Peoples R China
Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Beijing 100871, Peoples R China
Keywords AIR-POLLUTION
SOUTH FOEHN
HAZE
MESOSCALE
TRANSPORT
MODELS
OZONE
ENVIRONMENT
EMISSIONS
RELEVANT
Issue Date 6-Sep-2022
Publisher ATMOSPHERIC CHEMISTRY AND PHYSICS
Abstract This study reveals mesoscale planetary boundary layer (PBL) structures under various pollution categories during autumn and winter in the North China Plain (NCP). The role of the atmospheric internal boundaries (AIBs, referring to the discontinuity of meteorological conditions in the lateral direction) in regulating PBL structures and shaping the PM2.5 pollution patterns is emphasized. The Weather Research and Forecast (WRF) model is used to display the three-dimensional meteorological fields, and its performance is evaluated by surface observations and intensive soundings. The evaluation demonstrates that the model reasonably captures the mesoscale processes and the corresponding PBL structures. Based on the reliable simulations, three typical pollution cases are analyzed. Case 1 and case 2 represent the two main modes of the wind shear category pollution, which is featured with airflow convergence line/zone as AIB, and thus is dominated by dynamical effect. Case 1 presents the west-southwest wind shear mode associated with a trough convergence belt. The convergent airflow layer is comparable to the vertical scale of the PBL, allowing PM2.5 transport to form a high pollution area. Case 2 exhibits another mode with south-north wind shear. A "lying Y-shaped" convergence zone is formed with a thickness of about 3000 m, extending beyond the PBL. It defines a clear edge between the southern polluted air mass and the clean air in the north. Case 3 represents the topographic obstruction category, which is characterized by a cold-air damming AIB in front of the mountains. The PBL at the foothills is thermally stable and dynamically stagnant due to the capping inversion and the convergent winds. It is in sharp contrast to the well-mixed/ventilated PBL in the southern plains, especially in the afternoon. At night, this meteorological discontinuity becomes less pronounced. The diurnal variation of the PBL thermal and dynamical structure causes the pollutants to concentrate at the foot of the mountains during the daytime and locally accumulate throughout the entire plain in the evening. These results provide a more complete mesoscale view of the PBL structure and highlight its spatial heterogeneity, which promotes the understanding of air pollution at the regional scale.
URI http://hdl.handle.net/20.500.11897/654243
ISSN 1680-7316
DOI 10.5194/acp-22-11409-2022
Indexed SCI(E)
Appears in Collections: 环境科学与工程学院
环境模拟与污染控制国家重点联合实验室
物理学院

Files in This Work
There are no files associated with this item.

Web of Science®


0

Checked on Last Week

Scopus®



Checked on Current Time

百度学术™


0

Checked on Current Time

Google Scholar™





License: See PKU IR operational policies.