Title The C-S-Fe system evolution reveals organic matter preservation in lacustrine shales of Yanchang Formation, Ordos Basin, China
Authors Zhang, Wang
Jin, Zhijun
Liu, Quanyou
Shan, Xiaocai
Li, Peng
Liang, Xinping
Affiliation Chinese Acad Sci, Inst Geol & Geophys, State Key Lab Lithospher Evolut, Beijing 100029, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R China
Peking Univ, Inst Energy, Beijing 100871, Peoples R China
SINOPEC, State Key Lab Shale Oil & Gas Enrichment Mech & Ef, Beijing 100083, Peoples R China
SINOPEC, Petr Explorat & Prod Res Inst, Beijing 100083, Peoples R China
Keywords IRON FERTILIZATION
REACTIVE IRON
COAL MEASURES
SOURCE ROCKS
SEDIMENTS
ORIGIN
OCEAN
SEA
PRODUCTIVITY
CONSTRAINTS
Issue Date Aug-2022
Publisher MARINE AND PETROLEUM GEOLOGY
Abstract Dissimilatory iron reduction (DIR) and bacterial sulfate reduction (BSR) are vital links in the cycle of the C-S-Fe system. They have been extensively studied in relation to the preservation of organic matter (OM) in marine anoxic environments. However, there has been little attention on DIR and BSR in ancient continental lakes with complex geologic factors. This paper tentatively reveals the differential OM enrichment of lacustrine shale in the Triassic Chang 7 Member of Ordos Basin. The dynamic evolution of the C-S-Fe system is investigated by mean of element geochemistry, a sequential extraction procedure for iron components, and cluster analysis. The results show that (1) the BSR triggered by the exogenous-inputting sulfate formed H2S in continental lake basins, and the enhanced H2S concentration which prompted the strongly anoxic body is particularly conducive for the preservation of OM in the Chang 7 Member. (2) Deposition of the Triassic Chang 7 Member organic-rich shale took place in a predominantly anoxic ferruginous environment. The reactive irons of pyrites (Fepy) and siderites (Feb)car were produced during the mineralization of organic matter. The components of the Fepy and Fecarb reflect orderly dynamic evolution of the interaction between BSR and DIR. With the increase of sulfate input, the BSR reaction intensity increased, while DIR reaction intensity decreased. That can be quantitatively characterized by the value of Fepy/FeHR.
URI http://hdl.handle.net/20.500.11897/650056
ISSN 0264-8172
DOI 10.1016/j.marpetgeo.2022.105734
Indexed SCI(E)
Appears in Collections: 待认领

Files in This Work
There are no files associated with this item.

Web of Science®


0

Checked on Last Week

Scopus®



Checked on Current Time

百度学术™


0

Checked on Current Time

Google Scholar™





License: See PKU IR operational policies.