Title Aerosol Hygroscopicity and its Link to Chemical Composition in a Remote Marine Environment Based on Three Transatlantic Measurements
Authors Huang, Shan
Wu, Zhijun
Wang, Yu
Poulain, Laurent
Hoepner, Friederike
Merkel, Maik
Herrmann, Hartmut
Wiedensohler, Alfred
Affiliation Jinan Univ, Inst Environm & Climate Res, Guangzhou 511443, Peoples R China
Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland
Leibniz Inst Tropospher Res, D-04318 Leipzig, Germany
DEKRA Automobil GmbH, D-13405 Berlin, Germany
Peking Univ, State Key Joint Lab Environm Simulat & Pollut Con, Coll Environm Sci & Engn, Beijing 100871, Peoples R China
Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Atmospher Environm & Equip, Nanjing 210044, Peoples R China
Keywords PARTICLE HYGROSCOPICITY
ORGANIC AEROSOL
CCN ACTIVITY
GROWTH
ATMOSPHERE
ATLANTIC
PACIFIC
OCEAN
MASS
POLLUTION
Issue Date Jun-2022
Publisher ENVIRONMENTAL SCIENCE & TECHNOLOGY
Abstract The hygroscopicity of marine aerosols may largely impact particle optical properties, cloud activation ability, and consequently the global climate system. This study highlights findings from real-time hygroscopicity and chemical composition measurements in three open-ocean cruises over the Atlantic Ocean. Spatial variations in hygroscopicity (kappa) for marine boundary layer particles (<= 300 nm) were provided for the first time covering nearly 100 degrees of the latitude over the Atlantic Ocean, ranging from 0.14 to 1.06. Externally mixed particles with remarkably low hygroscopicity (0.14-0.16) were observed near the equator influenced by biomass burning emissions transported from Africa. For marine aerosols, a positive linear correlation evidently existed between kappa and wind speed within a range of 5-15 m/s even for nanometer particles. A closure study shows that the measured kappa of 300 nm particles is well explained by the bulk chemical composition. A good negative correlation between measured kappa and the organic mass fraction in PM1 for marine aerosols was found (slope = -2.26, R-2 = 0.44), while a different linear relationship appeared for continental aerosols at several sites (slope = -0.47, R-2 = 0.77). Accordingly, we provide a parameterization method to estimate bulk aerosol hygroscopicity both in continental and marine environments using particulate organic fractions.
URI http://hdl.handle.net/20.500.11897/648742
ISSN 0013-936X
DOI 10.1021/acs.est.2c00785
Indexed SCI(E)
Appears in Collections: 环境科学与工程学院
环境模拟与污染控制国家重点联合实验室

Files in This Work
There are no files associated with this item.

Web of Science®


0

Checked on Last Week

Scopus®



Checked on Current Time

百度学术™


0

Checked on Current Time

Google Scholar™





License: See PKU IR operational policies.