Title Determination of the refractive index of ambient aerosols
Authors Zhao, Gang
Li, Fei
Zhao, Chunsheng
Affiliation Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Beijing 100871, Peoples R China
Peking Univ, Coll Environm Sci & Engn, Beijing 100871, Peoples R China
China Meteorol Adm, Inst Trop & Marine Meteorol, Guangzhou 510640, Peoples R China
Keywords NORTH CHINA PLAIN
BLACK CARBON
OPTICAL-PROPERTIES
LIGHT-ABSORPTION
MIXING STATE
REAL PART
SOURCE APPORTIONMENT
ATMOSPHERIC AEROSOL
SIZE DISTRIBUTION
DENSITY
Issue Date 1-Nov-2020
Publisher ATMOSPHERIC ENVIRONMENT
Abstract The refractive index of ambient aerosols is one of the most important parameters indicating the scattering and absorption properties of aerosols. We proposed a new method for retrieving the refractive index (RI) of ambient particles. The main advantage of our method is that it assimilates the single particle mixing states measured by a single-particle soot photometer, when compared to the traditional optical method of retrieving the ambient aerosol RI. This method was validated by good consistency between the determined RI with this method and retrieved RI with the method of Zhao et al. (2019c) using datasets from field measurements conducted in East China in June of 2018. The results show that the real part of the refractive index of the black carbon (BC)-free particles ranged between 1.37 and 1.51 and this value changed little across different tested wavelengths. The mean complex refractive index for the refractory BC was 1.67 +/- 0.67i at 525 nm. The mean imaginary parts of the other non-BC components were 0.019 and 0.023 at 450 nm and 370 nm respectively. Brown carbon contributed to 5%, 13% and 29% of the ambient aerosol light absorption at 525 nm, 450 nm and 370 nm respectively in East China. This study provides the ability to determine the ambient aerosol complex refractive index and these data can be used in models to reduce the uncertainties in estimating aerosol radiative forcing.
URI http://hdl.handle.net/20.500.11897/592171
ISSN 1352-2310
DOI 10.1016/j.atmosenv.2020.117800
Indexed SCI(E)
Appears in Collections: 物理学院
环境科学与工程学院

Files in This Work
There are no files associated with this item.

Web of Science®


0

Checked on Last Week

Scopus®



Checked on Current Time

百度学术™


0

Checked on Current Time

Google Scholar™





License: See PKU IR operational policies.