Title Evidence of tunable magnetic coupling in hydrogenated graphene
Authors Cao, Shimin
Cao, Chuanwu
Tian, Shibing
Chen, Jian-Hao
Affiliation Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
Peking Univ, Key Lab Phys & Chem Nanodevices, Beijing 100871, Peoples R China
Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
Keywords 2-DIMENSIONAL ELECTRON-GAS
MAGNETORESISTANCE
Issue Date 1-Jul-2020
Publisher PHYSICAL REVIEW B
Abstract Many efforts have been devoted to understanding the origin and effects of magnetic moments induced in graphene with carbon atom vacancy, and light adatoms like hydrogen or fluorine. In the meantime, the large negative magnetoresistance (MR) widely observed in these systems is not well understood, nor has it been associated with the presence of magnetic moments. In this paper, we study the systematic evolution of the large negative MR of in-situ hydrogenated graphene in ultrahigh-vacuum (UHV) environment. We find for most combinations of electron density (n(e)) and hydrogen density (n(H)), MR at different temperature can be scaled to alpha = mu B-B/k(B)(T - T*), where T* is the Curie-Weiss temperature. The sign of T* indicates the existence of tunable ferromagneticlike (T* > 0) and antiferromagneticlike (T* < 0) coupling in hydrogenated graphene. However, the lack of hysteresis of MR or anomalous Hall effect below vertical bar T*vertical bar points to the fact that long-range magnetic order did not emerge, which we attribute to the competition of different magnetic orders and disordered arrangement of magnetic moments on graphene. We also find that localized impurity states introduced by H adatoms could modify the capacitance of hydrogenated graphene. This work provides a way to extract information from large negative MR behavior and can be a key to understanding interactions of magnetic moments in graphene.
URI http://hdl.handle.net/20.500.11897/590214
ISSN 2469-9950
DOI 10.1103/PhysRevB.102.045402
Indexed SCI(E)
Appears in Collections: 量子材料科学中心
纳米器件物理与化学教育部重点实验室

Files in This Work
There are no files associated with this item.

Web of Science®


0

Checked on Last Week

Scopus®



Checked on Current Time

百度学术™


0

Checked on Current Time

Google Scholar™





License: See PKU IR operational policies.