Title Ion-Scale Flux Rope Observed inside a Hot Flow Anomaly
Authors Bai, Shi-Chen
Shi, Quanqi
Liu, Terry Z.
Zhang, Hui
Yue, Chao
Sun, Wei-Jie
Tian, Anmin
Degeling, Alexander W.
Bortnik, Jacob
Rae, I. Jonathan
Wang, Mengmeng
Affiliation Shandong Univ, Sch Space Sci & Phys, Inst Space Sci, Shandong Prov Key Lab Opt Astron & Solar Terr Env, Weihai, Peoples R China
Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA
Univ Corp Atmospher Res, Boulder, CO USA
Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA
Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA
Peking Univ, Inst Space Phys & Appl Technol, Beijing, Peoples R China
Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
UCL, Mullard Space Sci Lab, Space & Climate Phys, London, England
Keywords BOW SHOCK
CLUSTER OBSERVATIONS
ELECTRON ACCELERATION
MAGNETIC RECONNECTION
OBSERVATIONAL TEST
MAGNETOPAUSE
FIELD
DISCONTINUITY
DEFLECTIONS
EVOLUTION
Issue Date 16-Mar-2020
Publisher GEOPHYSICAL RESEARCH LETTERS
Abstract We report an earthward moving ion-scale flux rope embedded within the trailing edge of a hot flow anomaly (HFA) observed by the Magnetospheric Multiscale satellite constellation on 17 December 2016 upstream of Earth's quasi-parallel bow shock. The driver of the HFA, a tangential discontinuity, was observed by the Wind spacecraft without flux rope signatures around it in the solar wind. This suggests that the earthward moving flux rope was generated inside the HFA. This ion-scale flux rope is not a force free structure and expands due to a strong magnetic pressure gradient force. Solar wind ions are decelerated inside the flux rope by the static electric field likely caused by the charge separation of solar wind particles. Our observations imply that magnetic reconnection may have occurred inside the HFA. Reconnection and flux ropes may play a role in particle acceleration/heating inside foreshock transients. Plain Language Summary Energetic particles are often observed inside the foreshock transients or in the foreshock region. The acceleration mechanisms of these energetic particles remain an open question. Possible candidates responsible for the acceleration have been put forward, such as Fermi acceleration, electron firehose, and lower hybrid drift instabilities and magnetic reconnection. However, to date, magnetic reconnection is only found in hybrid simulations during the generation of foreshock transients, but never reported by in situ observations. In this paper, we report an ion-scale flux rope observed at the trailing edge of a hot flow anomaly, which could be generated during the magnetic reconnection. Our observations indicate that reconnection could occur locally within foreshock transients and contribute to their particle acceleration.
URI http://hdl.handle.net/20.500.11897/588503
ISSN 0094-8276
DOI 10.1029/2019GL085933
Indexed SCI(E)
Scopus
EI
Appears in Collections: 地球与空间科学学院

Files in This Work
There are no files associated with this item.

Web of Science®


0

Checked on Last Week

Scopus®



Checked on Current Time

百度学术™


0

Checked on Current Time

Google Scholar™





License: See PKU IR operational policies.