Title Millimeter-Scale Single-Crystalline Semiconducting MoTe2 via Solid-to-Solid Phase Transformation
Authors Xu, Xiaolong
Chen, Shulin
Liu, Shuai
Cheng, Xing
Xu, Wanjin
Li, Pan
Wan, Yi
Yang, Shigi
Gong, Wenting
Yuan, Kai
Gao, Peng
Ye, Yu
Dai, Lun
Affiliation Peking Univ, Sch Phys, State Key Lab Artificial Microstruct & Mesoscop P, Beijing 100871, Peoples R China
Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
Peking Univ, Electron Microscopy Lab, Sch Phys, Beijing 100871, Peoples R China
Peking Univ, Acad Adv Interdisciplinary Studies, Beijing 100871, Peoples R China
Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
Issue Date 2019
Publisher JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Abstract Among the Mo- and W-based two-dimensional (2D) transition metal dichalcogenides, MoTe2 is particularly interesting for phase-engineering applications, because it has the smallest free energy difference between the semiconducting 2H phase and metallic 1T' phase. In this work, we reveal that, under the proper circumstance, Mo and Te atoms can rearrange themselves to transform from a polycrystalline 1T' phase into a single-crystalline 2H phase in a large scale. We manifest the mechanisms of the solid-to-solid transformation by conducting density functional theory calculations, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The phase transformation is well described by the time temperature transformation diagram. By optimizing the kinetic rates of nucleation and crystal growth, we have synthesized a single-crystalline 2H-MoTe2 domain with a diameter of 2.34 mm, a centimeter-scale 2H-MoTe2 thin film with a domain size up to several hundred micrometers, and a seamless 1T'-2H MoTe2 coplanar homojunction. The 1T'-2H MoTe2 'homojunction provides an elegant solution for ohmic contact of 2D semiconductors. The controlled solid-to-solid phase transformation in 2D limit provides a new route to realize wafer-scale single-crystalline 2D semiconductor and coplanar heterostructure for 2D circuitry.
URI http://hdl.handle.net/20.500.11897/550773
ISSN 0002-7863
DOI 10.1021/jacs.8b12230
Indexed SCI(E)
EI
Appears in Collections: 物理学院
人工微结构和介观物理国家重点实验室
前沿交叉学科研究院

Files in This Work
There are no files associated with this item.

Web of Science®


0

Checked on Last Week

Scopus®



Checked on Current Time

百度学术™


0

Checked on Current Time

Google Scholar™





License: See PKU IR operational policies.