Title SnO2-rGO nanocomposite as an efficient electron transport layer for stable perovskite solar cells on AZO substrate
Authors Liu, Rong
Qiu, Renzheng
Zou, Taoyu
Liu, Chuan
Chen, Jun
Dai, Qing
Zhang, Shengdong
Zhou, Hang
Affiliation Peking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
Chinese Acad Sci, Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China
Keywords AZO substrate
electron transport layer
electrochemical impedance spectroscopy
solar cell
graphene
metal oxide
Issue Date 2019
Publisher NANOTECHNOLOGY
Abstract Electron transport layer (ETL) plays an important role in realizing efficient and stable perovskite solar cells (PSCs). There are continuous efforts in developing new types of low cost ETLs with improved conductivity and compatibility with perovskite and the conducting electrode. Here, in order to obtain high efficient and stable PSCs on ZnO:Al (AZO) substrate, reduced graphene oxide (rGO) is incorporated into SnO2 nanoparticles to form composite En. For planar PSC on AZO substrates, SnO2-rGO with a low incorporation ratio of 3 wt% rGO significantly enhances the device short circuit current density (J(sc)) and the fill factor when compared to the device with pristine SnO2 ETL, leading to an overall power conversion efficiency of 16.8% with negligible hysteresis. The effectiveness of the excited charge transfer process of SnO2-rGO ETL is revealed by time-resolved photoluminescence decay, and by electrochemical impedance spectrum measurements. Furthermore, the solar cell stability is also enhanced due to the incorporation of rGO in the En. This work provides a low cost and effective ETL modification strategy for achieving high performance planar PSCs.
URI http://hdl.handle.net/20.500.11897/550667
ISSN 0957-4484
DOI 10.1088/1361-6528/aaf2ad
Indexed SCI(E)
EI
Appears in Collections: 信息工程学院

Files in This Work
There are no files associated with this item.

Web of Science®


0

Checked on Last Week

Scopus®



Checked on Current Time

百度学术™


0

Checked on Current Time

Google Scholar™





License: See PKU IR operational policies.