Title Transcriptional Regulation of miR528 by OsSPL9 Orchestrates Antiviral Response in Rice
Authors Yao, Shengze
Yang, Zhirui
Yang, Rongxin
Huang, Yu
Guo, Ge
Kong, Xiangyue
Lan, Ying
Zhou, Tong
Wang, He
Wang, Wenming
Cao, Xiaofeng
Wu, Jianguo
Li, Yi
Affiliation Peking Univ, Sch Life Sci, State Key Lab Prot & Plant Gene Res, Beijing 100871, Peoples R China
Chinese Acad Sci, State Key Lab Plant Genom, Inst Genet & Dev Biol, Beijing 100101, Peoples R China
Chinese Acad Sci, Natl Ctr Plant Gene Res, Inst Genet & Dev Biol, Beijing 100101, Peoples R China
Jiangsu Acad Agr Sci, Inst Plant Protect, Nanjing 210014, Jiangsu, Peoples R China
Sichuan Agr Univ, Rice Res Inst, Chengdu 611130, Sichuan, Peoples R China
Sichuan Agr Univ, Coll Agron, Chengdu 611130, Sichuan, Peoples R China
Fujian Agr & Forestry Univ, Vector Borne Virus Res Ctr, State Key Lab Ecol Pest Control Fujian & Taiwan C, Coll Plant Protect, Fuzhou 350002, Fujian, Peoples R China
Keywords SPL9
miR528
Antiviral defence
Rice
Issue Date 2019
Publisher MOLECULAR PLANT
Abstract Many microRNAs (miRNAs) are critical regulators of plant antiviral defense. However, little is known about how these miRNAs respond to virus invasion at the transcriptional level. We previously show that defense against Rice stripe virus (RSV) invasion entailed a reduction of miR528 accumulation in rice, alleviating miR528-mediated degradation of L-Ascorbate Oxidase (AO) mRNA and bolstering the antiviral activity of AO. Here we show that the miR528-AO defense module is regulated by the transcription factor SPL9. SPL9 displayed high-affinity binding to specific motifs within the promoter region of miR528 and activated the expression of miR528 gene in vivo. Loss-of-function mutations in SPL9 caused a significant reduction in miR528 accumulation but a substantial increase of AO mRNA, resulting in enhanced plant resistance to RSV. Conversely, transgenic overexpression of SPL9 stimulated the expression of miR528 gene, hence lowering the level of AO mRNA and compromising rice defense against RSV. Importantly, gain in RSV susceptibility did not occur when SPL9 was overexpressed in mir528 loss-of-function mutants, or in transgenic rice expressing a miR528-resistant AO. Taken together, the finding of SPL9-mediated transcriptional activation of miR528 expression adds a new regulatory layer to the miR528-AO antiviral defense pathway.
URI http://hdl.handle.net/20.500.11897/546009
ISSN 1674-2052
DOI 10.1016/j.molp.2019.04.010
Indexed SCI(E)
EI
Appears in Collections: 生命科学学院

Files in This Work
There are no files associated with this item.

Web of Science®


0

Checked on Last Week

Scopus®



Checked on Current Time

百度学术™


0

Checked on Current Time

Google Scholar™





License: See PKU IR operational policies.