Title Extraordinary transmission through gain-assisted silicon-based nanohole arrays at telecommunication regime
Authors Bavil, Mehdi Afshari
Deng, Qingzhong
Zhou, Zhiping
Gao, Linfei
Ye, Rui
Affiliation Peking Univ, Sch Elect Engn & Comp Sci, State Key Lab Adv Opt Commun Syst & Networks, Beijing 100871, Peoples R China.
Keywords Plasmonics
Gain media
Rare-earth-doped materials
All-optical devices
SUBWAVELENGTH HOLE ARRAYS
SURFACE-PLASMON POLARITONS
OPTICAL-TRANSMISSION
WAVE-GUIDES
LIGHT
PROPAGATION
Issue Date 2014
Citation PLASMONICS.9278.
Abstract After discovery of extraordinary transmission (EOT) subwavelength hole arrays structures patterned on a metal film have generated wide interest as they offer high optical transmission and strong localized electric near-field intensities. However, the large ohmic losses exhibited by SPs in the optical regime represent a fundamental limitation that reduces drastically the practical applicability of EOT properties. Furthermore, not compatible with silicon platform make it difficult for application purposes. As a possible solution to this fundamental problem, gain medium have been introduced to compensate the loss created by metallic film. But the most important yet challenging requirements for gain material are to be silicon compatible and working at telecommunication regime. The aim of this paper is to theoretically study optical amplification of EOT properties in periodic hole arrays incorporating optically pumped gain media. The gain media was selected Erbium/Ytterbium(Er/Yb) silicate that is silicon compatible with photoluminescence peak at telecommunication regime. Use of Er3+ ions has the advantages of proven, stable, and low-noise operation at the technologically important 1.54 m region. To excite the active material a laser with a maximum power of 372 mW at the wavelength of 1480 nm is applied. Geometrical parameters was obtained by solving the surface plasmon dispersion relation on periodic hole arrays. The condition for lossless propagation was obtained analytically. Simulation results shows that for lossless propagation we will need higher gain value. By considering higher gain values the absorption was approached to zero 30% transmission enhancements was observed at telecommunication wavelength.
URI http://hdl.handle.net/20.500.11897/292417
ISSN 0277-786X
DOI 10.1117/12.2071807
Indexed EI
CPCI-S(ISTP)
Appears in Collections: 信息科学技术学院
区域光纤通信网与新型光通信系统国家重点实验室

Files in This Work
There are no files associated with this item.

Web of Science®


0

Checked on Last Week

Scopus®



Checked on Current Time

百度学术™


0

Checked on Current Time

Google Scholar™





License: See PKU IR operational policies.